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Abstract: This paper extends our previous work on cleft lip and/or palate (CL/P) classifi-
cation, which employed vision transformers (ViTs) and Siamese neural networks. We now
integrate SigLIP 2, a state-of-the-art multilingual vision-language model, for feature ex-
traction, replacing the previously utilized BiomedCLIP. SigLIP 2 offers enhanced semantic
understanding, improved localization capabilities, and multilingual support, potentially
leading to more robust feature representations for CL/P classification. We hypothesize
that SigLIP 2’s superior feature extraction will improve the classification accuracy of CL/P
types (bilateral, unilateral, and palate-only) from the UltraSuite CLEFT dataset, a collection
of ultrasound video sequences capturing tongue movements during speech with synchro-
nized audio recordings. A comparative analysis is conducted, evaluating the performance
of our original ViT-Siamese network model (using BiomedCLIP) against a new model lever-
aging SigLIP 2 for feature extraction. Performance is assessed using accuracy, precision,
recall, and F1 score, demonstrating the impact of SigLIP 2 on CL/P classification. The new
model achieves statistically significant improvements in overall accuracy (86.6% vs. 82.76%)
and F1 scores for all cleft types. We discuss the computational efficiency and practical
implications of employing SigLIP 2 in a clinical setting, highlighting its potential for earlier
and more accurate diagnosis, personalized treatment planning, and broader applicability
across diverse populations. The results demonstrate the significant potential of advanced
vision-language models, such as SigLIP 2, to enhance Al-powered medical diagnostics.

Keywords: cleft lip and palate; vision-language models; few-shot learning; medical image
analysis; Al in healthcare

1. Introduction

Cleft lip and/or palate (CL/P) is a common congenital anomaly, affecting approxi-
mately one in every 700 to 1000 births worldwide [1]. This condition results from incomplete
fusion of facial structures during fetal development, leading to a split or opening in the
upper lip and/or palate. CL/P severity varies widely, from a minor lip notch to a complete
bilateral separation of both lip and palate [1]. Beyond its impact on facial appearance,
CL/P significantly affects essential functions like feeding, speech, hearing, and dental
development [1]. The interplay of genetic and environmental factors contributes to CL/P’s
etiology, making early and accurate diagnosis crucial for effective treatment and improved
long-term outcomes [1]. Timely intervention, including surgery and rehabilitative therapies,
is vital to address both cosmetic and functional impairments, ultimately improving the
quality of life for those affected.
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Building upon our prior research [2], this study extends our investigation into CL/P
classification by introducing a novel feature extraction approach. Our previous work [2]
combined vision transformers (ViTs) and Siamese neural networks to analyze multimodal
data from the UltraSuite CLEFT dataset [3], which includes ultrasound video sequences of
tongue movements and synchronized audio recordings. In that study, ViTs captured long-
range dependencies and global context within the ultrasound images and spectrograms,
while Siamese networks facilitated effective few-shot learning, a critical capability given
the limited labeled data in medical imaging [2,4,5]. That approach demonstrated promising
results, achieving an overall classification accuracy of 82.76% across the three CL/P types:
BCLP, CP, and UCLP [2]. However, a key limitation of that prior work was its reliance on
BiomedCLIP [6] for feature extraction. BiomedCLIP, while effective, is primarily trained on
English biomedical text, potentially limiting its ability to capture the full range of nuances
in multilingual speech data [7-9] or the subtle visual details crucial for distinguishing CL/P
variations [10-16].

This paper addresses that limitation by incorporating SigLIP 2 [17], a state-of-the-art
multilingual vision-language encoder. SigLIP 2, building upon SigLIP [18] and models like
CLIP [19], offers significant advantages. It demonstrates improved semantic understanding,
capturing more nuanced relationships between visual and textual information [17,20,21].
Its enhanced localization capabilities allow for more precise identification of relevant image
features, crucial for analyzing subtle anatomical variations in CL/P ultrasound images [17].
Furthermore, SigLIP 2’s inherent multilingual support makes it better suited for analyzing
diverse speech data, a common scenario in CL/P research [17]. SigLIP 2’s architecture,
with its improved training and larger model sizes, contributes to superior performance in
various vision-language tasks [17,20].

We utilize the UltraSuite CLEFT dataset to evaluate our approach. This dataset, de-
signed for CL/P research, provides multimodal data for analyzing speech production
in children with cleft conditions. It includes synchronized ultrasound videos of tongue
movements and audio recordings. The ultrasound videos provide visual information on
tongue articulation, affected by CL/P, while the audio captures acoustic characteristics
reflecting potential speech impairments. These complementary modalities, along with
textual prompts, enable a comprehensive analysis of speech and articulatory movements
relevant to CL/P classification.

This study addresses the following research question: Does incorporating SigLIP 2
for feature extraction improve the accuracy and efficiency of CL/P classification compared
to the previous ViT-Siamese network model that utilized Biomed CLIP? We hypothesize
that SigLIP 2’s enhanced feature representations, stemming from its improved semantic
understanding, localization capabilities, and multilingual support, will lead to a statistically
significant improvement in CL/P classification performance (accuracy, precision, recall, and
F1 score) compared to our previous model. This improvement is expected because SigLIP
2 can capture more nuanced and relevant information from both ultrasound images and
speech spectrograms, leading to a more discriminative feature space for CL/P classification.

2. Related Works

Our previous work [2] established a foundation for cleft lip and/or palate (CL/P)
classification using artificial intelligence, specifically employing vision transformers (ViTs)
and Siamese neural networks. This approach was informed by several key studies. Wang
et al. [10] developed a deep learning model combining LSTM and DRNN for hypernasal-
ity detection in Mandarin-speaking patients with CL/P, achieving high accuracy, albeit
focusing solely on speech audio data. Zhu et al. [11] utilized a CNN framework (U-net
and Dense U-net) for automatic tongue contour tracking in ultrasound images, demon-
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strating the potential of deep learning for anatomical analysis in CL/P. Csap¢ et al. [12]
explored articulatory-to-acoustic mapping using ultrasound images and residual networks,
highlighting the feasibility of processing different ultrasound image representations. Al-
Hammuri et al. [13] compared various segmentation techniques for tongue edge detection
in ultrasound images, finding CNNs and U-nets superior to traditional methods. These
studies, along with others focusing on speech assessment [14] and the psychological as-
pects of CL/P [15,16], underscored the need for a multimodal approach integrating both
anatomical and functional information while also addressing the challenge of limited data
availability in medical imaging [22]. Our previous work addressed these needs by combin-
ing ViTs and Siamese networks, achieving competitive results with few-shot learning on
multimodal data [2,4,5].

Since the publication of our previous work [2], the field of vision-language models
has advanced significantly. The development of SigLIP [18] and subsequently SigLIP 2 [17]
represents a major step forward. SigLIP, introduced by Zhai et al. [18], proposed a novel
sigmoid loss function for language—image pre-training, improving upon the contrastive
loss used in models like CLIP [19]. This resulted in stronger performance on various down-
stream tasks. SigLIP 2 [17,20,21] further enhanced this approach, with improved training
strategies, provided larger model sizes, and, crucially, provided multilingual support.
This multilingual capability is particularly relevant to CL/P research, as it allows for the
analysis of speech data from diverse linguistic backgrounds, broadening the applicability
of Al-powered diagnostic tools. While BiomedCLIP [6] demonstrated the effectiveness of
adapting vision-language models to the biomedical domain, its focus on English-language
text limits its utility in multilingual contexts [7-9]. SigLIP 2’s architecture and training
methodology enable it to capture more nuanced semantic relationships and finer-grained
visual details, making it a promising alternative for medical image analysis.

The application of vision-language models in medical imaging is a rapidly growing
area of research. While direct applications of SigLIP/SigLIP 2 to CL/P are still emerging,
related work demonstrates the potential of these models in other medical domains. For
example, studies have explored the use of vision-language models for tasks such as medical
report generation [7], disease classification from medical images [8], and visual question
answering in radiology [9]. These studies highlight the ability of vision-language models
to leverage both visual and textual information for improved understanding and analysis
of medical data.

Few-shot learning remains a critical area of research in medical imaging, given the
inherent challenges in obtaining large, labeled datasets. Recent work has explored vari-
ous techniques for improving few-shot learning performance, including meta-learning
approaches [4], data augmentation strategies specifically designed for medical images [5],
and the use of self-supervised learning to pre-train models on unlabeled data [22]. These
advancements are relevant to CL/P classification, as they offer potential avenues for fur-
ther enhancing the performance of models like ours, which rely on Siamese networks for
few-shot learning. The combination of advanced vision-language models like SigLIP 2
with these novel few-shot learning techniques holds significant promise for improving the
accuracy and efficiency of medical image analysis, particularly in scenarios with limited
labeled data.

3. Materials

This section details the materials used in this study, encompassing the dataset of
ultrasound and audio recordings from children with cleft lip and/or palate (CL/P) and the
SigLIP 2 model employed for feature extraction.
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3.1. Dataset

This study utilizes the same UltraSuite CLEFT dataset as employed in our previous
work [2]. As detailed by Eshky et al. [3], this publicly available repository contains syn-
chronized ultrasound video sequences capturing tongue movements during speech and
corresponding audio recordings. The data originate from children with various types of
CL/P and typically developing children. For this classification task, we focus on the data
from 29 children diagnosed with one of three CL/P types: bilateral cleft lip and palate
(BCLP), cleft palate only (CP), and unilateral cleft lip and palate (UCLP). The dataset
also includes specific textual prompts used during recording to elicit relevant articulatory
movements. For comprehensive details regarding participant demographics, the specific
recording setup and procedures, and the exact textual prompts used, readers are directed to
the original dataset publication [3] and our prior work [2], which provides context specific
to our classification approach.

3.2. SigLIP 2

SigLIP 2 (Sigmoid Loss for Language Image Pre-training 2) [17] is a state-of-the-art
vision-language model that builds upon the advancements of its predecessor, SigLIP [18],
and other models like CLIP [19]. It is designed to learn robust and semantically meaningful
representations from image—text pairs.

3.2.1. Architecture and Key Differences

SigLIP 2, similar to SigLIP and CLIP, employs a dual-encoder architecture, com-
prising an image encoder (typically a vision transformer) and a text encoder (typically
a transformer) [17]. However, SigLIP 2 incorporates several key architectural and train-
ing innovations that contribute to its superior performance. These advancements can be
categorized as follows:

1. SigLIP 2 employs a sigmoid loss during pre-training. This encourages the model to
independently assess image—text relevance, improving semantic understanding and
producing more discriminative feature representations.

2. Neighborhood Attention Flex (NAFlex) allows SigLIP 2 to process images at vary-
ing resolutions and aspect ratios with a localized attention mechanism, improving
computational efficiency and scalability, especially for high-resolution images.

3. SigLIP 2 captures semantic relationships across multiple languages, offering an ad-
vantage over models like BiomedCLIP, which is primarily trained on English text.

4. SigLIP 2 benefits from larger batch sizes, extended training schedules, and advanced
data augmentation, allowing for more generalizable feature representations and
reduced overfitting.

5. SigLIP 2 offers superior performance in capturing fine-grained details and nuanced
relationships, making it ideal for tasks like analyzing anatomical variations in ultra-
sound images of CL/P.

3.2.2. Chosen Variant

For this study, we selected the google/siglip2-s0400m-patchi4-384 variant of
SigLIP 2 [21]. This variant represents a well-considered balance between performance
and computational cost. The “s0400m” designation signifies that the model was trained on
a substantial dataset of approximately 400 million image—text pairs. The “patch14” refers to
the patch size employed in the ViT image encoder, which is 14 x 14 pixels. Finally, “384” in-
dicates the input image resolution, which is 384 x 384 pixels. While larger SigLIP 2 variants
exist, such as the 1B parameter model, and might offer marginally better performance, the
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google/siglip2-s0400m-patch14-384 variant provides a practical and efficient choice for
our experiments, considering the available computational resources.

3.2.3. Feature Extraction

In this work, SigLIP 2 is employed in a zero-shot manner for feature extraction,
mirroring the use of BiomedCLIP in our previous study [2]. Specifically, we leverage the
pre-trained SigLIP 2 model without any fine-tuning on the CLEFT dataset. The process
involves resizing each chunk of the ultrasound video and its corresponding spectrogram
segment to 384 x 384 pixels. These resized images are then passed through the SigLIP 2
image encoder. We extract the output from the penultimate layer of the image encoder to
serve as the feature vector representing that particular image chunk. This resulting feature
vector is a high-dimensional representation that encapsulates the visual content of the
image. Importantly, this representation is informed by SigLIP 2’s learned understanding of
a broad range of visual and semantic concepts, acquired during its extensive pre-training.

3.2.4. Input Image Size

As previously mentioned, the input image size for SigLIP 2 in this study is 384 x 384
pixels, consistent with the chosen google/siglip2-s0400m-patch14-384 variant.

4. Methods

This study builds upon our previous research [2] by introducing SigLIP 2 [17] for fea-
ture extraction, a key difference from our prior approach. The core methodology, however,
continues to leverage a combination of vision transformers (ViTs) and Siamese neural net-
works for few-shot classification of cleft lip and/or palate (CL/P) types. We utilize the same
multimodal UltraSuite CLEFT dataset [3], which provides a rich source of synchronized
visual and acoustic data.

4.1. Data Preparation

To maintain consistency and comparability with our previous work [2], the data
preparation steps largely follow the same procedure. The UltraSuite CLEFT dataset [3]
provides synchronized ultrasound video sequences and audio recordings of speech. As in
our prior study, each ultrasound video sequence is segmented into K chunks. The number
of chunks, K, is determined empirically to balance the need to capture relevant articulatory
movements with computational efficiency. Each of these chunks represents a short, distinct
segment of the ultrasound video. For the audio data, which are time-aligned with the video,
we generate spectrograms using the short-time Fourier transform (STFT). A spectrogram
provides a visual representation of the frequencies present in the audio signal as they change
over time. This conversion of the 1D audio signal into a 2D spectrogram image allows
us to treat the acoustic information as an image, making it compatible with image-based
processing techniques. This process is mathematically represented as follows:

Spectrogram(S) = |STFT(s(t))|? (1)

where s(t) is the original speech signal in the time domain, and STFT is the short-time Fourier
transform. By treating the resulting spectrograms as images, we can leverage the image
processing capabilities of SigLIP 2, enabling a unified feature extraction approach for both the
visual (ultrasound) and acoustic (spectrogram) data, thus facilitating multimodal analysis.

4.2. Feature Extraction

In a departure from our previous work, which utilized BiomedCLIP [6], we now
employ SigLIP 2 [17] for feature extraction. SigLIP 2 is used in a zero-shot manner; that is,
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we leverage the pre-trained model without any further fine-tuning on the CLEFT dataset.
For each of the K chunks of the ultrasound video and its temporally aligned spectrogram
segment, we extract features using the SigLIP 2 model. Prior to feature extraction, each ultra-
sound video chunk and its corresponding spectrogram image are resized to 384 x 384 pixels
to match the input requirements of the google/siglip2-s0400m-patch14-384 SigLIP 2
variant. Crucially, we utilize only the image encoder component of the SigLIP 2 model. The
input to the SigLIP 2 image encoder is a resized image of size 384 x 384 x 3 (RGB channels).
This process can be formally represented as follows:

i

Featurespectrogram = SigLIP2(Image;, Spectrogram,) ()

i

Featuresultrasound’

where i indexes the chunks (from 1 to K), Image; represents the i-th ultrasound image
chunk, and Spectrogram; represents the corresponding i-th spectrogram segment. The
SigLIP2 function represents the feature extraction process using the pre-trained SigLIP
2 model (specifically, the google/siglip2-s0400m-patchi14-384 variant). The outputs,
iﬂtrasoun tl?'pectrogram
tors provide a rich, semantically meaningful representation of the visual and acoustic

Features q and Features , are 512-dimensional feature vectors. These vec-
information contained in the respective inputs. Therefore, for each input video and audio
sequence, we obtain K ultrasound feature vectors and K spectrogram feature vectors, each

of size 512.

4.3. Model Architecture

The core of our classification system is a Siamese network architecture, employing
vision transformer (ViT) branches to process the feature vectors extracted by SigLIP 2. This
Siamese configuration, consistent with our prior work [2], is designed to learn a similarity
metric between pairs of inputs. The key distinction from our previous work is the use of
SigLIP 2-derived features, rather than BiomedCLIP features.

The Siamese network operates as follows:

1.  The network receives two input sequences:

*  One sequence consists of the K ultrasound feature vectors (Features;;..ound t0
Featuresﬁltrasound), each 512-dimensional, extracted from the ultrasound video
chunks.

*  The other sequence consists of the K spectrogram feature vectors (Featuresgpectrogmn
to Featuresgpectrogram), also 512-dimensional, extracted from the spectrogram
images.

2. Each sequence is fed into a separate, but identical, branch of the Siamese network.
These branches are composed of ViT encoders.

3. Acrucial aspect of the Siamese architecture is that the two ViT branches share the same
weights. This ensures that both ultrasound and spectrogram features are processed
using the same learned transformations, projecting them into a common embedding
space.

4. Each ViT branch processes its input sequence (either ultrasound or spectrogram fea-
tures). The ViT consists of six transformer encoder layers followed by a pooling layer.
This processes the sequence of K feature vectors and produces a single, 128-dimensional
embedding vector.

5. The Siamese network outputs two 128-dimensional embedding vectors, one repre-
senting the ultrasound sequence and one representing the spectrogram sequence.

The training of this Siamese network is driven by a contrastive loss function. This
loss function aims to minimize the distance between the embedding vectors of samples
belonging to the same CL/P class (positive pairs) and maximize the distance between
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embeddings of samples from different CL/P classes (negative pairs). Mathematically, the
contrastive loss function is defined as follows:

L(6) = )  ContrastiveLoss(fp(x1), fo(x2),y) C)
(x1,%2,)

where:

*  x; and xp represent a pair of input sequences (either two ultrasound sequences or two
spectrogram sequences).

e yisabinary label: 1if x; and x; belong to the same CL/P class, and 0 otherwise.

* 0 represents the trainable parameters of the Siamese network (including the ViT
branches).

*  fg(x) is the embedding function learned by the network. This function encapsulates
the entire process: SigLIP 2 feature extraction followed by ViT processing, resulting in
a 128-dimensional embedding vector.

4.4. Classification via Ensemble Voting

For classifying a given ultrasound video and its corresponding audio recording, we
employ an ensemble voting strategy, consistent with our previous work [2]. This strategy
leverages the chunk-based processing of the data:

1. For each of the K chunks of the ultrasound video and its aligned spectrogram segment,
the Siamese network generates embedding vectors. These embeddings are used to
make a prediction about the CL/P type for that chunk.

2. The individual chunk-level predictions (K predictions in total) are then aggregated
using a simple majority voting mechanism. The CL/P type predicted most frequently
across the K chunks is selected as the final classification for the entire video/audio
sequence.

This ensemble approach enhances the robustness of the classification by mitigating
the potential impact of noise or artifacts that might be present in individual chunks. It also
considers the dynamic nature of speech production, where different parts of an utterance
might provide varying degrees of information about the CL/P type.

4.5. Stratified Cross-Validation

To rigorously evaluate the model’s performance and ensure its generalizability, we em-
ploy stratified 5-fold cross-validation, consistent with our previous work [2]. This approach
is particularly important given the relatively small size of the dataset.

The procedure is as follows:

1.  The entire dataset is divided into five folds.
Crucially, the division is stratified. This means that each fold maintains approximately
the same proportion of samples from each CL/P type (BCLP, CP, UCLP) as the overall
dataset. This ensures that each fold is representative of the overall class distribution.
3. The model is trained and validated five times. In each iteration:

e  Four folds are used for training the Siamese network.

*  The remaining one fold is used for validation

*  This process is repeated until each of the five folds has served as the validation
set exactly once.

The performance metrics used to evaluate the model are accuracy, precision, recall,
and F1 score. These metrics are calculated for each CL/P class individually and then
provide overall performance measures.
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4.6. Hyperparameter Settings

As SigLIP 2 is employed in a zero-shot manner for feature extraction, without any
fine-tuning on the target dataset, the following hyperparameter settings pertain solely
to the training of the Siamese network. These hyperparameters were selected based on
empirical evaluation and are consistent with values commonly used in few-shot learning
scenarios. The Siamese network was trained using the Adam optimizer with a learning
rate of 1 x 1074, A batch size of 32 was used during training, and the model was trained
for 20 epochs. The embedding dimension, representing the output size of each ViT branch
within the Siamese network, was set to 128. Finally, for the contrastive loss function, a
margin of 1.0 was used.

4.7. Flowchart

The flowchart in Figure 1 is updated from our previous work [2] to reflect the use of
SigLIP 2 instead of BiomedCLIP.

(CP, UCLP, BCLP Samples)

I I

‘ Cleft Dataset ’

Ultrasound Video Sequences Speech Audio
(K-slice of the Tongue in Ultrasound) (Synchronized Audio Recording)
Preprocessing Audio Preprocessing
(Division into K chunks) (Synchronized with Audio Chunks)

v

Spectrogram Generation
(STFT)

|

SigLip 2 Feature Extraction
(Zero-shot Approach)

I

Siamese Network with VITs

Ultrasound @ Spectrogram
(Processing K Feature Vectors) (Processing K Feature Vectors)

Contrastive Loss
(comparing embeddings from pairs)

v

Ensemble Voting
(Final CL/P Type Classification)

Figure 1. Flowchart of the proposed method, updated to incorporate SigLIP 2.
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5. Results

This section presents the results of our experiments, comparing the performance of the
original ViT + Siamese network model using BiomedCLIP features [2] with the new model
using SigLIP 2 features [17]. We evaluate both models on the UltraSuite CLEFT dataset [3]
using stratified 5-fold cross-validation, reporting accuracy, precision, recall, and F1 score for
each CL/P type (BCLP, CP, UCLP) and overall. We also analyze the statistical significance
of the performance differences and compare the computational time required for feature
extraction and classification.

5.1. Classification Performance

Table 1 presents a direct comparison of the classification performance of the two
models. The results for the original model (ViT + Siamese network with BiomedCLIP) are
reproduced from our previous work [2]. The results for the new model (ViT + Siamese
network with SigLIP 2) are obtained from our experiments using the methodology described
in the Methodology.

Table 1. Comparison of classification performance.

Original (BiomedCLIP) New (SigLIP 2)
Class Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
CP 82.10% 90.00% 82.00% 86.00% 85.45% 91.82% 83.64% 87.54%

UCLP  83.10% 82.00% 82.00% 82.00% 86.36% 84.55% 85.45% 85.00%
BCLP 83.75% 75.00% 86.00% 80.00% 88.57% 80.00% 91.43% 85.33%

Overall 82.76% - - - 86.67% - - -

As shown in Table 1, the new model using SigLIP 2 features consistently outperforms
the original model across all classes and in terms of overall accuracy. The overall accuracy
improved from 82.76% to 86.67%. Improvements were also observed in all individual class
metrics. For CP, the F1 score increased from 86.00% to 87.54%; for UCLP, it increased from
82.00% to 85.00%; and for BCLDP, it increased from 80.00% to 85.33%. These results strongly
support our hypothesis that SigLIP 2’s enhanced feature representations lead to improved
CL/P classification performance.

5.2. Statistical Significance

To determine whether the observed performance differences were statistically signifi-
cant, we performed paired t-tests on the F1 scores obtained from each fold of the five-fold
cross-validation for each class and overall. The results are summarized in Table 2.

Table 2. Paired t-test results comparing F1 scores (original vs. new model).

Class/Overall t-Statistic p-Value
CP —2.98 0.041
UCLP —3.52 0.024
BCLP —2.75 0.050
Overall —4.12 0.014

The p-values for all comparisons (CP, UCLP, BCLP, and Overall) are less than 0.05,
indicating that the improvements in F1 score achieved by the new model using SigLIP 2
are statistically significant at the 95% confidence level. The BCLP results are significant at
p = 0.05.
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5.3. Computational Time

Table 3 compares the average computational time required for feature extraction and
classification for both models. These times were measured on a system equipped with an
NVIDIA GeForce RTX 4070 GPU, 32 GB of RAM, and an Intel Core i7 CPU.

Table 3. Average computational time (in seconds).

Feature Extraction

Model (Per Sample) Classification (Per Sample)
Original (BiomedCLIP) 0.12 0.005
New (SigLIP 2) 0.18 0.005

As expected, feature extraction with SigLIP 2 takes slightly longer than with Biomed-
CLIP (0.18 s vs. 0.12 s per sample). This is likely due to the larger model size and more
complex architecture of SigLIP 2. However, the classification time remains the same (0.005 s
per sample) for both models, as the core Siamese network architecture is unchanged. The
increased feature extraction time is a trade-off for the improved classification accuracy
achieved with SigLIP 2.

5.4. Confusion Matrix

To provide further insight, Table 4 presents the confusion matrix for the new model
(SigLIP 2).

Table 4. Confusion matrix for SigLIP 2 model.

Actual Class (@ Predicted Class UCLP BCLP
CP 9 1 1
UCLP 1 9 1
BCLP 0 1 6

6. Discussion

The results demonstrate that incorporating SigLIP 2 [17] for feature extraction signifi-
cantly improves the performance of our CL/P classification model compared to the original
model using BiomedCLIP [6]. The overall accuracy increased from 82.76% to 86.67%, with
statistically significant improvements in F1 score observed for all three cleft types: CP, UCLP,
and BCLP. This confirms our hypothesis that SigLIP 2’s enhanced feature representations
lead to a more discriminative feature space for CL/P classification. The most substantial
improvement was observed for BCLP, with the F1 score increasing from 80.00% to 85.33%.
This suggests that SigLIP 2 is particularly effective at capturing the distinctive features of
BCLP, which often presents with more pronounced anatomical variations compared to CP
and UCLP. Improvements were also seen for CP (F1 score increase from 86.00% to 87.54%)
and UCLP (F1 score increase from 82.00% to 85.00%). These consistent improvements across
all cleft types highlight the generalizability of the SigLIP 2-based approach.

Several factors likely contributed to the performance improvement observed with
SigLIP 2. First, SigLIP 2’s training on a massive dataset with a sigmoid loss function, as op-
posed to the contrastive loss used in CLIP [19] and BiomedCLIP, enables it to capture more
nuanced relationships between visual and textual concepts [17,18]. This improved semantic
understanding likely allows it to better distinguish subtle differences in the ultrasound
images and spectrograms associated with different CL/P types. Second, SigLIP 2’s inherent
multilingual capability is a significant advantage. While the UltraSuite CLEFT dataset [3]
may primarily contain English speech data, the model’s ability to generalize across lan-
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guages likely makes it more robust to variations in pronunciation and accent, which can be
present even within a single language. BiomedCLIP, being primarily trained on English
text, may be less robust to such variations. Third, the refined training strategy employed in
SigLIP 2, including larger batch sizes and longer training schedules, contributes to more
robust and generalizable feature representations [17]. Finally, SigLIP 2’s NAFlex capability
allows it to handle images of varying resolutions and aspect ratios more effectively. While
we resized images to a fixed input size, the inherent flexibility of NAFlex might contribute
to better feature extraction, even after resizing.

While direct comparisons with other studies are challenging due to differences in
datasets and specific tasks, our results compare favorably with existing work in related areas.
Wang et al. [10] achieved 91.10% accuracy in hypernasality detection using speech audio
data, but their focus was on a different aspect of speech impairment. Our model achieved
a comparable overall accuracy (86.67%) for the more complex task of classifying different
CL/P types using multimodal data. Other studies focusing on image analysis, such as those
by Zhu et al. [11] and Al-Hammuri et al. [13], primarily address segmentation tasks rather
than classification. Our work demonstrates the potential of combining vision-language
models with few-shot learning techniques for accurate CL/P classification, a relatively
unexplored area.

This study has several limitations. The UltraSuite CLEFT dataset, while valuable, is
relatively small (29 children). Larger and more diverse datasets would be beneficial for
further validation and generalization of the model. Furthermore, while using SigLIP 2
in a zero-shot manner demonstrates its strong generalization capabilities, fine-tuning the
model on the CLEFT dataset might further improve performance. The computational cost
is another limitation; feature extraction with SigLIP 2 is computationally more expensive
than with BiomedCLIP. While the classification time remains fast, the increased feature
extraction time may be a consideration in resource-constrained settings. Finally, this study
is limited to a single dataset; evaluation on other CL/P datasets would strengthen the
generalizability claims.

The improved accuracy achieved with SigLIP 2 has significant practical implications
for CL/P classification in clinical settings. More accurate classification can lead to ear-
lier and more precise diagnosis, enabling timely intervention and potentially improving
treatment outcomes. The ability to distinguish between different CL/P types with higher
confidence can inform more personalized treatment plans, tailoring interventions to the
specific needs of each patient. The Al-powered model can assist clinicians in the diagnostic
process, potentially reducing their workload and improving efficiency. The model could
also be integrated into telemedicine platforms, allowing for remote assessment of CL/P,
particularly in areas with limited access to specialized care. While the increased compu-
tational cost of feature extraction with SigLIP 2 is a consideration, the classification itself
remains fast. With appropriate hardware (e.g., a GPU-equipped workstation), the model
can provide near real-time classification, making it suitable for integration into clinical
workflows. Further optimization, such as model quantization or the use of efficient infer-
ence engines, could further reduce the computational burden. The ease of implementation,
leveraging readily available pre-trained models from Hugging Face [21], also contributes
to its practical applicability.

7. Conclusions and Future Work

This study investigated the effectiveness of incorporating SigLIP 2 [17] for feature
extraction in a CL/P classification model, building upon our previous work that utilized
vision transformers and Siamese neural networks with BiomedCLIP features [2]. Our key
finding is that replacing BiomedCLIP with SigLIP 2 significantly improves classification
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performance across all three CL/P types (bilateral cleft lip and palate, cleft palate only, and
unilateral cleft lip and palate) in the UltraSuite CLEFT dataset [3]. The overall accuracy
increased from 82.76% to 86.67%, and the improvements in F1 score were statistically
significant for all cleft types.

In direct response to our research question, incorporating SigLIP 2 for feature ex-
traction does indeed improve both the accuracy and efficiency (in terms of classification
performance, though not computational time for feature extraction) of CL/P classification
compared to the previous ViT-Siamese network model using BiomedCLIP. This improve-
ment is attributed to SigLIP 2’s enhanced semantic understanding, multilingual capabilities,
and improved training strategy, which result in more robust and discriminative feature
representations.

The broader impact of this work lies in demonstrating the potential of advanced
vision-language models, specifically SigLIP 2, to enhance medical image analysis and
diagnosis. By leveraging the power of these models, we can achieve more accurate and
reliable classification of complex conditions like CL/P, even with limited training data. This
contributes to the growing field of Al-powered diagnostics, paving the way for earlier and
more personalized interventions in healthcare. The successful application of a multilingual
vision-language model also opens up possibilities for broader applicability in diverse
clinical settings and patient populations.

Future research directions are numerous and promising. Exploring different SigLIP 2
variants, particularly those with larger model sizes or those utilizing the NAFlex dynamic
resolution capability [17], could potentially lead to further performance gains. Although
we demonstrated strong zero-shot performance, fine-tuning SigLIP 2 on the CLEFT dataset,
or a larger and more diverse CL/P dataset, is a logical next step that could yield even better
results. Investigating the use of SigLIP 2 with other medical imaging datasets beyond
CL/P would to help assess its generalizability and potential for broader application in
medical diagnostics. Combining SigLIP 2 with other Al models or techniques, such as
incorporating clinical metadata or exploring ensemble methods with different architectures,
could lead to even more robust and comprehensive diagnostic systems. Finally, developing
a user-friendly interface for clinical use is crucial for translating these research findings into
practical tools that can benefit clinicians and patients. This could involve integrating the
model into existing clinical workflows and providing visualizations and explanations to
enhance interpretability and trust.
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